Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.

Identifieur interne : 000C54 ( Main/Exploration ); précédent : 000C53; suivant : 000C55

Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.

Auteurs : Rajendra Rai [États-Unis] ; Jennifer J. Tate [États-Unis] ; Karthik Shanmuganatham [États-Unis] ; Martha M. Howe [États-Unis] ; David Nelson [États-Unis] ; Terrance G. Cooper [États-Unis]

Source :

RBID : pubmed:26333687

Descripteurs français

English descriptors

Abstract

Gln3, a transcription activator mediating nitrogen-responsive gene expression in Saccharomyces cerevisiae, is sequestered in the cytoplasm, thereby minimizing nitrogen catabolite repression (NCR)-sensitive transcription when cells are grown in nitrogen-rich environments. In the face of adverse nitrogen supplies, Gln3 relocates to the nucleus and activates transcription of the NCR-sensitive regulon whose products transport and degrade a variety of poorly used nitrogen sources, thus expanding the cell's nitrogen-acquisition capability. Rapamycin also elicits nuclear Gln3 localization, implicating Target-of-rapamycin Complex 1 (TorC1) in nitrogen-responsive Gln3 regulation. However, we long ago established that TorC1 was not the sole regulatory system through which nitrogen-responsive regulation is achieved. Here we demonstrate two different ways in which intracellular Gln3 localization is regulated. Nuclear Gln3 entry is regulated by the cell's overall nitrogen supply, i.e., by NCR, as long accepted. However, once within the nucleus, Gln3 can follow one of two courses depending on the glutamine levels themselves or a metabolite directly related to glutamine. When glutamine levels are high, e.g., glutamine or ammonia as the sole nitrogen source or addition of glutamine analogues, Gln3 can exit from the nucleus without binding to DNA. In contrast, when glutamine levels are lowered, e.g., adding additional nitrogen sources to glutamine-grown cells or providing repressive nonglutamine nitrogen sources, Gln3 export does not occur in the absence of DNA binding. We also demonstrate that Gln3 residues 64-73 are required for nuclear Gln3 export.

DOI: 10.1534/genetics.115.177725
PubMed: 26333687
PubMed Central: PMC4649666


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.</title>
<author>
<name sortKey="Rai, Rajendra" sort="Rai, Rajendra" uniqKey="Rai R" first="Rajendra" last="Rai">Rajendra Rai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shanmuganatham, Karthik" sort="Shanmuganatham, Karthik" uniqKey="Shanmuganatham K" first="Karthik" last="Shanmuganatham">Karthik Shanmuganatham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Howe, Martha M" sort="Howe, Martha M" uniqKey="Howe M" first="Martha M" last="Howe">Martha M. Howe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nelson, David" sort="Nelson, David" uniqKey="Nelson D" first="David" last="Nelson">David Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 tcooper@uthsc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:regionArea>
<wicri:noRegion>Memphis</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26333687</idno>
<idno type="pmid">26333687</idno>
<idno type="doi">10.1534/genetics.115.177725</idno>
<idno type="pmc">PMC4649666</idno>
<idno type="wicri:Area/Main/Corpus">000B95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B95</idno>
<idno type="wicri:Area/Main/Curation">000B95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B95</idno>
<idno type="wicri:Area/Main/Exploration">000B95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.</title>
<author>
<name sortKey="Rai, Rajendra" sort="Rai, Rajendra" uniqKey="Rai R" first="Rajendra" last="Rai">Rajendra Rai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shanmuganatham, Karthik" sort="Shanmuganatham, Karthik" uniqKey="Shanmuganatham K" first="Karthik" last="Shanmuganatham">Karthik Shanmuganatham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Howe, Martha M" sort="Howe, Martha M" uniqKey="Howe M" first="Martha M" last="Howe">Martha M. Howe</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Nelson, David" sort="Nelson, David" uniqKey="Nelson D" first="David" last="Nelson">David Nelson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 tcooper@uthsc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:regionArea>
<wicri:noRegion>Memphis</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active Transport, Cell Nucleus (MeSH)</term>
<term>Amino Acid Substitution (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Catabolite Repression (MeSH)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Cytoplasm (metabolism)</term>
<term>Glutamine (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Glutamine (métabolisme)</term>
<term>Mutation (MeSH)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Répression catabolique (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sites de fixation (MeSH)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>Transport nucléaire actif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutamine</term>
<term>Nitrogen</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytoplasm</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Cytoplasme</term>
<term>Facteurs de transcription</term>
<term>Glutamine</term>
<term>Noyau de la cellule</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Active Transport, Cell Nucleus</term>
<term>Amino Acid Substitution</term>
<term>Binding Sites</term>
<term>Catabolite Repression</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutation</term>
<term>Répression catabolique</term>
<term>Sites de fixation</term>
<term>Substitution d'acide aminé</term>
<term>Transport nucléaire actif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Gln3, a transcription activator mediating nitrogen-responsive gene expression in Saccharomyces cerevisiae, is sequestered in the cytoplasm, thereby minimizing nitrogen catabolite repression (NCR)-sensitive transcription when cells are grown in nitrogen-rich environments. In the face of adverse nitrogen supplies, Gln3 relocates to the nucleus and activates transcription of the NCR-sensitive regulon whose products transport and degrade a variety of poorly used nitrogen sources, thus expanding the cell's nitrogen-acquisition capability. Rapamycin also elicits nuclear Gln3 localization, implicating Target-of-rapamycin Complex 1 (TorC1) in nitrogen-responsive Gln3 regulation. However, we long ago established that TorC1 was not the sole regulatory system through which nitrogen-responsive regulation is achieved. Here we demonstrate two different ways in which intracellular Gln3 localization is regulated. Nuclear Gln3 entry is regulated by the cell's overall nitrogen supply, i.e., by NCR, as long accepted. However, once within the nucleus, Gln3 can follow one of two courses depending on the glutamine levels themselves or a metabolite directly related to glutamine. When glutamine levels are high, e.g., glutamine or ammonia as the sole nitrogen source or addition of glutamine analogues, Gln3 can exit from the nucleus without binding to DNA. In contrast, when glutamine levels are lowered, e.g., adding additional nitrogen sources to glutamine-grown cells or providing repressive nonglutamine nitrogen sources, Gln3 export does not occur in the absence of DNA binding. We also demonstrate that Gln3 residues 64-73 are required for nuclear Gln3 export. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26333687</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>201</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.</ArticleTitle>
<Pagination>
<MedlinePgn>989-1016</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.115.177725</ELocationID>
<Abstract>
<AbstractText>Gln3, a transcription activator mediating nitrogen-responsive gene expression in Saccharomyces cerevisiae, is sequestered in the cytoplasm, thereby minimizing nitrogen catabolite repression (NCR)-sensitive transcription when cells are grown in nitrogen-rich environments. In the face of adverse nitrogen supplies, Gln3 relocates to the nucleus and activates transcription of the NCR-sensitive regulon whose products transport and degrade a variety of poorly used nitrogen sources, thus expanding the cell's nitrogen-acquisition capability. Rapamycin also elicits nuclear Gln3 localization, implicating Target-of-rapamycin Complex 1 (TorC1) in nitrogen-responsive Gln3 regulation. However, we long ago established that TorC1 was not the sole regulatory system through which nitrogen-responsive regulation is achieved. Here we demonstrate two different ways in which intracellular Gln3 localization is regulated. Nuclear Gln3 entry is regulated by the cell's overall nitrogen supply, i.e., by NCR, as long accepted. However, once within the nucleus, Gln3 can follow one of two courses depending on the glutamine levels themselves or a metabolite directly related to glutamine. When glutamine levels are high, e.g., glutamine or ammonia as the sole nitrogen source or addition of glutamine analogues, Gln3 can exit from the nucleus without binding to DNA. In contrast, when glutamine levels are lowered, e.g., adding additional nitrogen sources to glutamine-grown cells or providing repressive nonglutamine nitrogen sources, Gln3 export does not occur in the absence of DNA binding. We also demonstrate that Gln3 residues 64-73 are required for nuclear Gln3 export. </AbstractText>
<CopyrightInformation>Copyright © 2015 by the Genetics Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rai</LastName>
<ForeName>Rajendra</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tate</LastName>
<ForeName>Jennifer J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shanmuganatham</LastName>
<ForeName>Karthik</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Howe</LastName>
<ForeName>Martha M</ForeName>
<Initials>MM</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nelson</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cooper</LastName>
<ForeName>Terrance G</ForeName>
<Initials>TG</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 tcooper@uthsc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM035642</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM-35642</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C071664">GLN3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D021581" MajorTopicYN="N">Active Transport, Cell Nucleus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057465" MajorTopicYN="Y">Catabolite Repression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Gln3</Keyword>
<Keyword MajorTopicYN="N">glutamine</Keyword>
<Keyword MajorTopicYN="N">methionine sulfoximine</Keyword>
<Keyword MajorTopicYN="N">nitrogen catabolite repression</Keyword>
<Keyword MajorTopicYN="N">nuclear export</Keyword>
<Keyword MajorTopicYN="N">nuclear import</Keyword>
<Keyword MajorTopicYN="N">rapamycin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>08</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26333687</ArticleId>
<ArticleId IdType="pii">genetics.115.177725</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.115.177725</ArticleId>
<ArticleId IdType="pmc">PMC4649666</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5834-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Feb;9(2):602-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2651902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Aug;178(15):4734-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1972 Jan;109(1):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4550662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):73-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Jul;13(7):4011-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8321208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Apr 3;277(3):621-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9533884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 Feb;169(2):553-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3542962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):32136-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11408486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 30;279(18):19294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14970238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 22;280(29):27195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15911613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1997 Mar;23(6):1157-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9106207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Jul;13(7):3999-4010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8321207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 30;286(52):44897-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Dec;177(23):6910-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 23;284(4):2522-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18467-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17439949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Feb;177(3):792-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Jun;179(11):3761-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9171427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jan 15;21(1-2):135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 18;288(3):1841-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23184930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1959 May;77(5):548-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13654215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 1998 Jul;62(7):1455-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9720231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1992 Aug 1;80(3):575-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1638017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Jun 1;308 ( Pt 2):629-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7772051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1973 Nov 2;126(2):111-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4591376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 6;276(27):25359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1976 Apr;126(1):198-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">944180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014;4:3827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2006 Mar;6(2):218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16487345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1984 Dec;4(12):2767-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6152013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1984 Dec;4(12):2758-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6152012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Apr;178(8):2465-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1996 Jan 15;250(1):106-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8569680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Dec;11(12):6205-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1944286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 23;269(51):32214-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7798221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1960 May;235:1265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13827775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Jul 1;16(13):3974-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 1999 Aug;12(1):35-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10554772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 May;105(1):415-424</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1987 May;133(5):1235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2888838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Aug 15;278 ( Pt 1):105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1883322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Jan;31(1):92-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14679193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jul;177(14):4190-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7608102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Jul 23;261(5120):438-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8332909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 12;275(19):14408-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1979 Jul 1;181(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">39555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jul 4;289(27):18999-9018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24847055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Jan;175(1):64-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8416910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Aug;5(8):1625-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26024867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2004 Jun;17(6):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Dec;182(23):6584-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1676-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8446581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Aug;176(15):4718-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8045902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aust J Biol Sci. 1975 Jun;28(3):301-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">52352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1973 Jul 17;53(2):367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4146147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Feb;170(2):708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2892826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 9;278(19):16878-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12624103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Mar;16(3):847-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8622686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Jun;178(12):3470-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8655543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Dec;9(12):5440-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2511434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Feb;172(2):1014-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2153652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Nov;14(11):4342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1984 Feb 15;218(1):147-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6143552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 8;281(49):37980-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Feb 25;23(4):558-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7899075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 25;288(4):2789-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23223232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2000 Apr;3(2):126-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10745000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Oct;173(20):6332-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1917865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 May 25;255(10):4808-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6102991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Aug 29;381(2):373-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18602114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Sep;17(5):877-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8596437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Aug 9;25(15):3546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1976 Nov 25;251(22):7278-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">791949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 May;9(5):1355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1970293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Aug;173(16):4977-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1860815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 4;285(23):17880-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20378536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Jun;179(11):3416-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9171383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Jul;29(13):3803-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19380492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 20;288(38):27243-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jun 3;15(11):2791-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8654376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 May 15;290(1-2):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Jul;6(1):1-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17618850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Mar 5;35(9):3031-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8608142</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Rai, Rajendra" sort="Rai, Rajendra" uniqKey="Rai R" first="Rajendra" last="Rai">Rajendra Rai</name>
</region>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
<name sortKey="Howe, Martha M" sort="Howe, Martha M" uniqKey="Howe M" first="Martha M" last="Howe">Martha M. Howe</name>
<name sortKey="Nelson, David" sort="Nelson, David" uniqKey="Nelson D" first="David" last="Nelson">David Nelson</name>
<name sortKey="Shanmuganatham, Karthik" sort="Shanmuganatham, Karthik" uniqKey="Shanmuganatham K" first="Karthik" last="Shanmuganatham">Karthik Shanmuganatham</name>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26333687
   |texte=   Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26333687" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020